100% Renewable Energy Systems in Europe

Christian Breyer
Professor for Solar Economy
100% Renewable UK
Webinar, September 3, 2021
Agenda

- General Aspects
- European Energy Transition
- Special Aspects
- Summary
Background

What does it mean?
- (net) zero greenhouse gas (GHG) emissions by 2050 are mandatory
- negative GHG emissions are costly, risky, with unclear responsibilities
- thus zero GHG emissions is the real target for the energy system

European Green Deal

Transforming the EU’s economy for a sustainable future
- Mobilising research and fostering innovation
- A zero pollution ambition for a toxic-free environment
- Preserving and restoring ecosystems and biodiversity
- From ‘Farm to Fork’: a fair, healthy and environmentally friendly food system
- Accelerating the shift to sustainable and smart mobility
- Financing the transition
- Leave no one behind (Just Transition)

The EU as a global leader

A European Climate Pact

Paris Agreement

(“well below 2°C”)
Key Rationale for Electrification: Efficiency

<table>
<thead>
<tr>
<th></th>
<th>Electricity</th>
<th>Heat</th>
<th>Transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Today</td>
<td>Fossil-fuel condensing power station</td>
<td>Gas heating</td>
<td>Internal-combustion engine</td>
</tr>
<tr>
<td>Fuel</td>
<td>Losses</td>
<td></td>
<td>Losses</td>
</tr>
<tr>
<td>Electricity</td>
<td></td>
<td></td>
<td>Losses</td>
</tr>
<tr>
<td>Efficiency</td>
<td>40 %</td>
<td>85 %</td>
<td>25 – 40 %</td>
</tr>
<tr>
<td>Tomorrow</td>
<td>Wind/solar energy</td>
<td>Heat pumps</td>
<td>Electric mobility</td>
</tr>
<tr>
<td>Electricity</td>
<td></td>
<td></td>
<td>Losses</td>
</tr>
<tr>
<td>Efficiency</td>
<td>100 %</td>
<td>340 %</td>
<td>80 %</td>
</tr>
</tbody>
</table>

* The efficiency of internal-combustion engines in other applications (e.g. maritime transport, engine-driven power plants) can exceed 50%.

source: Brown et al., 2018., Renewable and Sustainable Energy Reviews, 92, 834-847
Agenda

- General Aspects
- European Energy Transition
- Special Aspects
- Summary
Key insights:
- the following results refer to a recent study of LUT and SolarPower Europe
- Europe in this report refers to EU-27 plus Iceland, UK, Turkey, Ukraine, Switzerland, Norway, all Balkan countries
- the energy system comprises: power, heat, transport, industry; excluding non-energetic fuels demand
Scenario Overview

<table>
<thead>
<tr>
<th>Scenario</th>
<th>RE energy share</th>
<th>Paris Agreement</th>
<th>GHG emissions in the energy system</th>
<th>Fossil fuels phaseout</th>
<th>Nuclear phaseout</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAGGARD</td>
<td>62% by 2050</td>
<td>×</td>
<td>-90% in 2050</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>MODERATE</td>
<td>100% by 2050</td>
<td>Achieved 2.0°C</td>
<td>-100% in 2050</td>
<td>Achieved in 2050</td>
<td>×</td>
</tr>
<tr>
<td>LEADERSHIP</td>
<td>100% by 2040</td>
<td>Achieved 1.5°C</td>
<td>-100% in 2040</td>
<td>Achieved in 2040</td>
<td>Achieved in 2040</td>
</tr>
</tbody>
</table>
LUT Energy System Transition Model

Key features:
- full hourly resolution, applied in global-local studies, comprising about 120 technologies
- used for several major reports, in about 50 scientific studies, published on all levels, including Nature
- strong consideration on all kinds of Power-to-X (mobility, heat, fuels, chemicals, desalinated water, CO₂)

source: Bogdanov et al., 2021. Full energy sector transition towards 100% renewable energy supply: integrating power, heat, transport and industry sectors including desalination, Applied Energy, 283, 116273
Primary Energy Demand: Fuel Use

Key insights:

- High rate of electrification is essential to achieving a 100% renewable and integrated energy system.
- Combustion processes are a burden for an efficient energy system, well documented by Laggard.
Electricity Generation and Heat Supply

Key insights:
- As of 2040, solar PV will become the dominant source of electricity generation across the three scenarios, and by 2050 it will reach at least 48% in the Laggard scenario and up to 63% in the Leadership scenario.
- Solar PV economics perform excellently, while benefiting from low-cost storage and Power-to-X flexibility.
- Heat pumps emerge as core part of a 100% renewable system, with over 60% share of heat generation by 2050.
Storage Output and Energy Demand

Key insights:
- Batteries provide the bulk of energy storage in a 100% renewable energy system.
- Only little seasonal storage is needed in a 100% renewable system, due to vast flexibility in sector coupling and broad electrification.
- Full sector coupling and high electrification rates keep the growth of storage output up to 25% of final energy demand in 2050.
Regional Electricity Capacities in 2050

Key insights:
- Full sector coupling provides energy security for Europe, with PV capacities predominantly located in the southern regions, while wind energy systems are mainly installed in the northern and western regions of Europe.
- Leadership requires more electricity than Moderate, since more combustion processes have to be covered by 2040 due to failed investments in 2010s and 2020s.
- Export of synthetic fuels in 2040s may lead to net-negative GHG emissions in Europe.
- Faster transition requires more wind, slightly delayed transition leads to more solar PV, see for instance Germany.
- Curtailment is 4-5%, while 15% cross-border trade.
Key insights:

- Week of least renewables supply (winter) and most renewables supply (spring) is visualised

- A 100% renewables-based and fully integrated energy system in 2050 will function without fail every day of the year: Even in the dark winter days the country easily copes with energy demand

- Key balancing component are electrolysers (Power-to-fuels) which convert electricity to hydrogen, when electricity is available, but drastically reduce their utilisation in times of low electricity availability

- Massive ramp rates in the energy system have to be managed, as well as forecasting errors require balancing
Power-to-X: the Core of Sector Coupling

Key insights:
- Power-to-X comprises: Mobility, Fuels, Chemicals, Heat, Steel, Desalinated Water
- Hydrogen is ONLY required, where direct electrification fails, e.g. chemicals, fuels for aviation/marine
Energy System Structure: present

Key insights:
- Energy sectors (power, heat, transport) practically separated
- Dominating role of fossil fuels
- Transport sector has practically not yet started the transition
Energy System Structure: future

Key insights:
- 100% renewables will lead to strongly coupled energy system
- Most important energy carrier is electricity, while second most important is green hydrogen
- Fossil and nuclear fuels are not part of a sustainable and least cost energy system
Cumulative Energy System Cost

Key insights:
- A 100% renewable energy system is the most cost-efficient way to become climate neutral by 2050: cumulative costs of achieving 100% renewable energy by 2050 in the Moderate scenario are 6% lower than the cost of the less ambitious Laggard scenario.
- The Leadership scenario achieves zero GHG emissions by 2040, for slightly higher cost than for a zero GHG emission system by 2050, while it costs practically the same as a delayed transition.
- In 2050, the levelised costs of energy in the 100% renewable scenarios are 5–6% lower than costs in a less ambitious scenario, and at the same time 7% more competitive than today’s costs.
Key insights:

- A 100% renewable transition triggers the sharpest decline in GHG emissions, decline by over 60% by 2030, and will be down to zero in 2050, or even 2040 in the Leadership scenario. By contrast, Laggard scenario still emits around 800 million tonnes of CO$_2$eq per year by 2050.

- The Leadership Scenario has the most positive impact on the climate, resulting in remaining cumulative GHG emissions of only 53 GtCO$_2$eq and down to zero over the next 20 years. Leadership scenario emits 41% and 28% less GHG emissions compared to Laggard and Moderate, respectively.
Two transition pathways for 100% RE are simulated for Europe
Flexible generation, grid exchange and storage are supportive
Higher levels of grid interconnection result in lower system cost
PV prosumers with battery storage reduce need for grids
Policy and technological development should proceed in a Super Smart Energy System manner

source: Child, Kemfert, Bogdanov, Breyer, 2019. Flexible electricity generation, grid exchange and storage for the transition to a 100% RE in Europe, Renewable Energy, 139, 80-101
Agenda

- General Aspects
- European Energy Transition
- Special Aspects
- Summary
Role of Sector Coupling and Flexibility

Key insights:

• Power-to-X is the central element of a future energy system, since electricity is the universal platform
• Electricity-based hydrogen emerges to the 2nd relevant energy carrier (for fuels, chemicals)
• **Flexibility in the energy system is key:**
 • Supply response (hydro dams, bioenergy) for indirect balancing of solar and wind
 • Grid interconnections, in particular for balancing wind energy
 • Smart demand response: BEV (smart charging, V2G), heat pumps, electrolysers
 • Storage (hours, days, weeks, seasons; electricity, heat, fuels)
• Cross-border integration may be less important than cross-sectoral cost reduction
• Efficient sector coupling substantially reduces curtailment
• Low-capex batteries and low-capex electrolysers are key for the energy transition
• No flexibility from CO\textsubscript{2} direct air capture units, H\textsubscript{2}-to-X synthesis and desalination
Key diagrams why there will be massive change

Key insights:
- massive continued cost decline for solar PV, wind, battery, electrolyzers, CO₂ DAC
- massive pressure to eliminate all fossil fuels
- massive direct and indirect electrification of all energy sectors and non-energetic fossil fuel demand

References:
PV, battery: Vartiainen et al., Progress in PV
Electrolyser: LUT model assumption, Nature
CO₂ DAC: Fasihi et al., J of Cleaner Prod
CO₂eq decline: IPCC SR1.5
100% RE articles in recent years

Key insights:
- Research field exists since about 10 years
- Most publications are in hourly resolution
- More multisector publications
- Europe (FI, DK, DE) is hot spot of 100% RE research
- Gaps are in regional coverage and sectoral coverage (industry, NETs), temporal range (21st century)
- Community starts to get impact on neighbouring fields (e.g. IAMs, IPCC), but still ignored for major reports (IEA, IRENA, most governments)

Special Note on solar PV

Key insights:
• The severely outdated solar PV costs in energy scenarios, in particular in IPCC (based on IAMs), have been now excellently documented in various independent research
 • finding 1: IPCC scenarios use highly outdated cost data, worse than non-IPCC scenarios
 • finding 2: cost as of today are lower than projected in IPCC/IAMs by 2050
 • finding 3: PtX routes are not much used in IPCC/IAMs, due to limited methods and wrong PV costs
• What does it mean?
 • Renewal of IPCC/IAMs for PV & PtX, more diversified scenarios
 • High risk of distorted policies based on IPCC/IAMs results

articles discussing the PV cost issue
Xiao et al., 2021. Energy Strategy Reviews, 35, 100636
Victoria et al., 2021. Joule, in press
Agenda

- General Aspects
- European Energy Transition
- Special Aspects
- Summary
Summary

- Low ambition pathway in Europe is a burden for society, from both a climate change and economic perspective.

- The Moderate scenario modelling zero GHG emissions by 2050 appears to be the most economic pathway.

- A highly ambitious climate change mitigation pathway is possible, which would result in more investments, but with the benefit of lower per unit energy costs as of 2050.

- Power-to-X is the central element of a future energy system, while solar PV is the prime source of energy, complemented by wind energy, supported by hydro/bio.

- UK energy transition comparable to Europe but with higher wind shares.

- 100% renewable energy is a fast growing research field serving societal needs.
Thank you for your attention … … and to the team!

all publications at: www.scopus.com/authid/detail.uri?authorId=39761029000
new publications also announced via Twitter: @ChristianOnRE
Major milestones on 100% RE research

Sorensen, 1975
Sorensen, 1996
Czisch, 2005
Greenpeace, 2010
LUT/EWG, 2019

Lovins, 1976
Lund, 2007
Sterner, 2009
Jacobson, 2011
Bogdanov et al. 2019
Special Note on solar PV

Key insights:
- Solar PV emerges to the major source of energy till 2050, in Europe and globally
- Practically ALL global scenarios dramatically fail in the right role of solar PV
- Fast cost decline of the last 10 years is ignored by IEA, IPCC (based on IAMs), and others
- Climate change mitigation could be more powerful, if major institutions would perform better
- Massive and fundamental re-thinking on solar PV, plus supporting batteries, is needed
- Fridays For Future increase pressure and massively punish low-performing parties
- We witness the dawn of the Solar Age and should take benefits instead of destroying the future

articles based on real PV cost
Vartiainen et al., 2020. PIP, 28, 439-453
Breyer et al., 2018. PIP, 26, 505-523
Breyer et al., 2017. PIP, 25, 727-745
100% RE for Power Sector

Area demand:
- Wind: 4% max per region; 0.3% of land area used
- Solar PV rooftop is zero impact area; ground-mounted is 0.14% of total global land area

source: Breyer et al., 2018., Progress in Photovoltaics, 26, 505-523; Bogdanov et al., 2019. Nature Communications, 10, 1077
Overview on transport sector transition

- synthetic fuels is still very often only hydrogen
- LUT has the highest synthetic fuel share among all groups in the world
- no consolidated view on transport sector transition: range from US DoE (98% fossils) to 100% RE group
- different bets on biofuels, but many do not factor in sustainability limits
- IEA deserves massive pressure from civil society, but also IPCC for being laggard in progressive options
- Oil majors will go for bankruptcy, if they follow their own scenarios – for Shell might be hope

source: Khalili et al., 2019. Energies, 12, 3870
Lithium – a potentially limiting raw material

Key insights:

- No consensus on the Lithium availability
- Matching various supply and demand scenarios almost always leads to supply shortage (total resource in 2060s/2070s, annual supply much earlier)
- Circular economy is a must for Lithium
- Lithium based batteries can carry the energy transition far, but not fully
- Alternative battery concepts needed, such on Aluminium or Magnesium basis

source: Greim et al., 2020. Nature Communications, 11, 4570
Resources and Energy Demand

Key insights:
- no lack of energy resources
- limited conventional resources
- solar and wind resources need to be the major pillars of a sustainable energy supply

Remark:
- conventional resources might be lower than depicted by Perez
Nov 2016, COP-22, Marrakech:
48 countries (Climate Vulnerable Forum) decided for a 100% RE target

More Countries and States set 100% targets, e.g.:
Denmark, Sweden, California, Spain, Hawaii, …

Some Countries are already around 100%, e.g.:
Norway, Costa Rica, Uruguay, Iceland, Tokelau, …

Cities with 100% RE targets, e.g.:
Barcelona, Masdar City, Munich, Masheireb, Downtown, Doha, Vancouver, San Francisco, Copenhagen, Sydney, …

Companies with 100% RE targets, e.g.:
Google, Microsoft, Coca-Cola, IKEA, Wärtsilä, Walmart, …
Role of Sector Coupling and Flexibility

Key insights:

• Power-to-X is the central element of a future energy system, since electricity is the universal platform
• Electricity-based hydrogen emerges to the 2nd relevant energy carrier (for fuels, chemicals)
• Flexibility in the energy system is key:
 • Supply response (hydro dams, bioenergy) for indirect balancing of solar and wind
 • Grid interconnections, in particular for balancing wind energy
 • Smart demand response: BEV (smart charging, V2G), heat pumps, electrolysers
 • Storage (hours, days, weeks, seasons; electricity, heat, fuels)
• Cross-border integration may be less important than cross-sectoral cost reduction
• Efficient sector coupling substantially reduces curtailment
• Low-capex batteries and low-capex electrolysers are key for the energy transition
• No flexibility from CO₂ direct air capture units, H₂-to-X synthesis and desalination
Electricity exchange across Europe

Figure 4.7: Electricity Demand, Generation and Trade in 2050 Across Europe

Key insights:
- Exchange of electricity across borders at around 15%, thus it is a highly decentralised energy system.
- Curtailment of electricity is around 4-5%, which is result of a least cost energy system.
- Good news: European cooperation leads to lower overall cost; in case of lack of cooperation the transition can be still organised nationally.
CO₂ Direct Air Capture

Key insights:
• DAC capex decline is driven by learning rate (10-15%) and capacity demand
• Half of DAC capacity demand can be expected from the energy system
• Half of DAC capacity demand can be expected from CDR
• DAC business will become most likely a triple digit billion industry by 2050

Nordic region: Power sector first (only power sector)

Key insights:
- Excellent resources in the Nordic/ Baltic Sea Region enable a fast track transition towards 100% renewables
- Most relevant new capacities are wind energy and distributed solar PV
- Most polluting capacities are oil shales in Estonia, while nuclear violates sustainability criteria and is not affordable

source: Child et al., 2018. The Baltic Sea Region: Storage, grid exchange and flexible electricity generation for 100% renewable energy. Energy Procedia, 155, 390-402
What does this mean for the Nordic?

Key insights:

- Be aware of these results are only for the power sector, without considerations for heat, transport, industry
- Decreasing levelised cost of electricity, driven by phase-out of oil shales and nuclear, and low-cost renewables
- Storage becomes increasingly relevant as source of flexibility
- Current interconnections amount to approximately 12 GW
- Simulation results do not show significant need for expansion (+1 GW between Finland and Estonia)
- 15% of total generation of 587 TWh is traded to other Baltic regions and not consumed in the region of origin

source: Child et al., 2018. The Baltic Sea Region: Storage, grid exchange and flexible electricity generation for 100% renewable energy, Energy Procedia, 155, 390-402
Global Overview

- The world is structured into 9 major regions, which are further divided to 145 sub-regions
- Some sub-regions represent more than one country, others parts of a larger country
- The sub-regions are interconnected by power lines within the same country
- The results shown are for the Power, Heat, Transport, Desalination sectors
- The energy transition scenario is carried out in full hourly resolution for all energy sectors
- In total 106 different technologies are applied

source: EWG/LUT, 2019. Global Energy System based on 100% RE; Bogdanov et al., 2021. Low-cost renewable electricity as the key driver of the global energy transition towards sustainability, Energy, in press
Renewables for ALL energy demand (TPED)

Key insights:
- TPED shifts from being dominated by coal, oil and gas in 2015 towards solar PV and wind energy by 2050
- Renewable sources of energy contribute less than 20% of TPED in 2015, while in 2050 they supply 100% of TPED
- Solar PV drastically shifts from less than 1% in 2015 to around 69% of primary energy supply by 2050, as it becomes the least cost energy supply source across the world
- Solar PV capacity demand
 - 63 TW energy system
 - 13 TW chemical industry

source: EWG/LUT, 2019. Global Energy System based on 100% RE; Bogdanov et al., 2021. Low-cost renewable electricity as the key driver of the global energy transition towards sustainability, Energy, in press
Key insights:

- The total annual costs are in the range of 5100-7200 b€ through the transition period and well distributed across the system.
- Cost of energy remains around 50-57 €/MWh and is increasingly dominated by capital costs as fuel costs lose importance through the transition period.
- Costs are well spread across a range of technologies with major investments for PV, wind, batteries, heat pumps and synthetic fuel conversion up to 2050.
- The cumulative investment costs are about 67,200 b€.
- This is the only known cost-neutral 1.5C compliant pathway without negative CO₂ emission technologies and significantly growing energy services demand.